
Tuning Distributed Control Algorithms 
Optimal Functioning 

for 

M A R C  B U I  
INRIA, Domaine de Voluceau, Rocquencourt BP 105 78153 Le Chesnay Cedex, France 

(Received: 19 November 1990; accepted: 5 June 1991) 

Abstract. In this paper, we present a model which characterizes distributed computing algorithms. The 
goals of this model are to offer an abstract representation of asynchronous and heterogeneous 
distributed systems, to present a mechanism for specifying externally observable behaviours of 
distributed processes and to provide rules for combining these processes into networks with desired 
properties (good functioning, fairness. . .) .  Once these good properties are found, the determination 
of the optimal rules are studied. 

Subsequently, the model is applied to three classical distributed computing problems: namely the 
dining philosophers problem, the mutual exclusion problem and the deadlock problem, (generalizing 
results of our previous publications [1], [2]). The property of fairness has a special position that we 
discuss. 
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1. Introduction 

This paper presents a new model which describes the phenomena of distributed 
computing through a behavioural study of distributed algorithms. This model is 
based on the interconnection of N Markov chains, each representing a distributed 
process. 

Our model differs from the usual ones (see [4], [5], [14]) since it handles a 
formal specification of distributed systems through local considerations. Good 
functioning properties for the execution of algorithms are found from the 
processes' behaviour. Thus good rules for designing algorithms with desired 
properties (liveness, safety, fairness) are found. 

Optimal functioning is then studied through the optimization of a decision 
function under some constraints imposed by the network structure. 

The model is applied to three classical problems: namely, the dining 
philosophers problem, the mutual exclusion problem and the deadlock problem in 
which fairness reveals itself to be an important issue. 

Journal of Global Optimization 2: 177-199, 1992. 
(~) 1992 Kluwer Academic Publishers. Printed in the Netherlands. 
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2. Formal Model for Distributed Algorithms 

A distributed system is a software and hardware structure distributed in a network 
of processes which computes information by message exchange. This network 
consists of sites (or processes) and a communication system. Each site corre- 
sponds, at the hardware level, to a processor with its own local memory and, at 
the software level, to a sequential process with communication primitives ([7], [8], 

[lO], [121). 
The emergence of real distributed machines has added a new urgency to the 

development of adaptable algorithms and to their control. In order to solve the 
problems encountered in the development of distributed operating systems, a 
formal model must be defined, in particular, distributed mechanisms must be well 
understood, new problems related to the use of parallelism have to be highlighted, 
and adapted solutions have to be found ([12], 13]). 

Three main issues are usually considered over this framework on distributed 
control problems: the design of control algorithms, their correctness proof and the 
evaluation of their performance. Our model helps to investigate the last two 
issues as it will be described in the following. Its main characteristics are that it is 
based on an observational approach, it deals only with local considerations and 
uses a known mathematical tool, the Markov chains. 

This gives a new approach to deal with distributed systems. 

3. Decision Function and Optimality Criteria 

Consider N finite homogeneous Markov chains with state spaces ~ =  
{ 1 , . . . ,  vk}, ( k =  1 , . . . ,  N) and corresponding transition matrices ~M, (k = 

1 . . . . .  N). 
The notation ~M expresses the fact that each transition matrix depends on a 

multi-dimensional parameter Pk characterizing it, for example Pk = 
( k p l l ,  k k • • ", Pa, " " " ' P'k'k)' Thus, these kM are matrices Mpk. 

DEFINITIONS 

(i) The distributed system is made up of a network of processes logically 
represented by the interconnection of N Markov chains. Then there exists a set of 
relations between the parameters Pa, • • •, PN which defines and characterizes the 
network, 

~ i ( P l , - . . , P u ) = 0  j = I , . . . , N .  (1) 

These relations are constraints (which can be linear). We write p = 
(Pl, • • •,  Pu) E ~ iff the parameters & , . . . ,  PN satisfy (1). 

(ii) For every k @ { 1 , . . , ,  N}, suppose that there exists only one acyclie 
ergodic class k~ and at most one transient class k~. This is the condition (C).  
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For the chain number k, if i ~ k~, let kT i be the mean recurrence time of state i 
(that is to say kT~ = E~_I_ '~J"~(n)i; , where Jf(n)ii is the probability that starting from 
state i, one comes back to i for the first time in n steps)• Recall that kTg = 

• k (n)  rr~ji  being the coeffi- 1/hm,_,= mj~ , this latter expression is independent of j, k (,) 
cient (j ,  i) of the matrix (kM)~. 

If j and j ' E  k~, let us denote by ksjj, the total mean sojourn time in j '  starting 
from j. These kSjr are given by the matrix (I - kW)-~ where kw is the submatrix 
restriction of kM to the transient states (states of k~). A decision function is a real 
function f of variables kT i and ksjj,, i E k~, j and j ' E  k~, and with k E 
{ 1 , . . . ,  N}. Since these kT~ and ksjj, are expressed in term of matrices (kM)n, i.e., 

in term of Ok, f is a function of the variables Pk" The definition of a decision 
function f implies that the network verifies condition (C). For each problem, 
following its context, a decision function will be defined and its role will be to 
control the functioning of the system and to find so the optimum policies• 

(iii) An optimality criterion is based on the optimization (maximization or 
minimization) of a decision function f, under some constraints. 

4. Our Model 

Referring to many authors (see for example [4], [5], [7] [12], [14]), we specify our 
definition of a distributed system. 

Our model (bo, b oo 9", ~)  is based upon the interconnection of N Markov 
chains: 

N k • bo, the set of system-states, is here the set Ilk=a(~f). 
• boo the set of initial system-states is a subset of b e. 
• ~-is the set of functioning rules. Each functioning rule, denoted here by Mp, 

is a N-tuple of transition matrices (Mpl . . . .  , MpN), where p E ~.  We are only 
interested in functioning rules with which we can associate a decision function 
f (that is to say only with rules associated with a Markovian network which 
satisfies condition (C)). 
A functioning rule is said to be optimal if and only if its p maximizes (resp. 
minimizes) the decision function f when the imposed optimality criterion is 
the maximization (resp. minimization) of f. 
A functioning rule M e is said to be bad if and only if its p maximizes (resp. 
minimizes) the decision function f when the imposed optimality criterion is 
the minimization (resp. maximization) of f. Every functioning rule which is 
not bad is said to be advisable. Optimal and advisable functioning rules are 
good functioning rules. 

• For each problem, we want to find one or several optimal functioning rules, 
or if this is not possible to find advisable ones. We let ~q = {Mp, p ~ ~0, 
~0 C ~ } C 9-, define the set of good functioning rules of the problem• 
Now, we are going to study 3 applications of our model. 
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5. The Dining Philosophers' Problem 

5.1. T H E  PROBLEM 

In distributed computing, the problem of resource allocation and of solving 
conflicts between processes is well illustrated by the dining philosophers problem. 
Traditionally, the philosophers are arranged in a circle around a spaghettis plate, 
with a fork between each pair of philosophers. In order to eat, each philosopher 
requires his two adjacent forks ([7])• Algorithmic solutions can be found in [7]. 

The problem considers a network of N finite homogeneous Markov chains with 
the same state space. V k E  { 1 , . . . ,  N}, k~f= ~f=  { 1 , . . .  ,4}, where state 1 =  
"waiting",  state 2 = "with one fork",  state 3 = "with two forks", state 4 = 
"thinking",  and with the following transition matrix: ( . .  0) 

0 1 - Ek /3k 
M °k = 0 0 1 -  3,k "Yk ' 

1 0 0 0 

where Pk = (ak ,  Ek, 3k)@]0, 1[ 3 , for k E  { 1 , . . .  ,N} .  
The Markov chains verify condition (C): more precisely, each of these chains 

has only one acyclic ergodic class and no transient class. The connection in the 
network is expressed here by the relations: 

Lk(OZk, E k + l )  ~ Otk -[- E k + t  --  1 = 0 (k = 1 , . . . ,  N - 1) 

LN(aN,  E l )  ~ a N  -t- E1 -- 1 = O .  

The set of Pk = ( % ,  Elk, Yk) verifying these constraints is denoted by ~ .  

5.2. D E F I N I T I O N S  

The set 6e of system-states is here ~N. 
The set 6 e° of initial system-states is here the set ~N itself. 
The set 9" of functioning rules is here (Mo)pe ~. 
The decision function is here: 

N ak flk + Ek Yk + Yk ak + a~EkYk 

f =  k=l  ~ q k  OlkE k ' 

. . . . .  Ek=l qk where the constants qk are such that Vk E {1, N} qk @ ]0, 1[ and N = 
1. The reason to the choice of this function is that: on the one hand, Vk E 
{1 . . . .  , N}, each state is recurrent so that the kTi, (i----1, 2, 3, 4), have a 
meaning; on the other hand, the best functioning rule is the one that minimizes 
the mean recurrence time to the state with two forks (that is to say, the rule that 
performs a return to state 3 the most often possible). Thus, with the help of the 

• k n 1 . computation of h m , _ , ~ ( M )  , we obtain the expression for the r~,, in particular, 
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1 O~k ~k 
kT3 Olk~ k -~" [~k'y k JV 7k Otk -1- Otk[~k T k " 

The function f expresses the sum of the recurrence time kT 3 weighted by the 
coefficients qk" Its minimization determines the desired functioning rule. 

5.3 .  R E S U L T S  

T H E O R E M  5.1. V(T 1, . • . ,  TN) @ (]0, 1[) N, the unique optimal functioning rule is 

M ° = ( M o l , . . .  , MoN ) where 

and 

~/qk+lTk+l ) 

Pk= l+~/qk+'~k+l '~ l+~/qk+'Tk+l-- ,Yk k ~ ( 1 , . . . , N - - 1 }  

qk Tk qk ~* 

( ) 1 qNTN 
PN= . 1 + ~ ' 1 + ,  q/--0~7% 'TN " qN~,i; ' ;q-~ 

N C I f  the % , . . . ,  "IN are bounded from below, that is to say (T1,. • •, ~&) @ Hk=~[ k, 1[, 
then the set ~ of  good functioning rules is the singleton {Me}, where 

and 

~/q~+lck÷, ) 
1 -- qkCk Ck k ~  {1 N -  1} 

Pk = 1+  ~/qk+lck+' ' 1 +  ~f qk+lck+l- ' ' ' ' ' '  

qkCk qkCk 

( ) 1 " qNCN 
pN= , , 

" qNCN " qNCN 

Proof. By considering the constraints L] and introducing the Lagrange multi- 
pliers A j, ( j  E ( 1 , . . . ,  N}), we have to solve the following system of equations: 

N 
Of + 0 Z AiL i - - q k T k  - -  - -  2 + h k = 0 ,  k ~ { 1  . . . . .  N } ,  

O a k  O a k  k = t Ot k 

Of a N -- qk')'k 
8/3"-----k + "~k X AiLj =" + = 0  k ~  {2, N} ~=~ ~ x ~ _ ,  , . . . ,  , 

N 
Of + 3 E AiLj-~--q1% a~-~ 5-~,~=~ ~ +AN=O, 
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which implies 

qk 'Yk  _ qk+l Yk+l 
2 ~ 2  , 

O~k k + l  

and thus 

X/qk+lTk+1 

Since a e +/3  k = 1, we have 

1 
O~ k x/qk+l 3Jk+l ' 

1 +  

and 

•/qk+lTk+l 
/3k= 1 +  4 q~÷13'~÷1 

qkY~ 

Moreover ,  the function 

(cq, ¢i~,...,  aN, fi~)---> qk (1 + 7k) + Yk + ~/k 

+ ANLN(aN, fla) 

is convex as a sum of convex functions. Thus, the optimum is a minimum. 
When  ( y l , . . .  , YN) varies, and if the parameters are bounded,  the form of f 

shows that the minimum is reached for (Yl,- • • , 7N) = (Q,"  • • , CN)" 
Remark  that,  in the particular case where Vk E { 1 , . . . ,  N} q~ -- -~, we find the 

result repor ted in [1] with 

Pk = 

6. The Mutual Exclusion Problem 

6.1. T H E  P R O B L E M  

When many processes require an access to shared resources, mutual exclusion 
must be ensured. Such a protocol consists in a policy which allows at most one 
process to work with the resource. This is the typical contention problem and an 
overview of solutions can be found in [7], [11]. 

The  problem considers a network of N homogeneous and finite Markov chains 



T U N I N G  D I S T R I B U T E D  C O N T R O L  A L G O R I T H M S  1 8 3  

with the same state space Vk E { 1 , . . . ,  N}, k~ = ~ = {1, 2, 3, 4}, where state 
l = " r e q u e s t  state", state 2="refusa l" ,  state 3="acceptat ion '', state 4 =  
"execution", and with the following transition matrix: 

Mp, = ( a k i l k l - a k - f l k O 0  ) l o ' Y k l _ o k  "Yko0 6ko0 1 --Ok3 k ' 

where Pk = (O~k, ilk, Yk, 6k, Ok) ~ ]0, 1[ 5 and 1 - a k - / 3  k > 0. The Markov chains 
verify condition (C): each of the chains has one and only one acyclic ergodic class 
(and has no transient class). The interconnection into network is expressed by the 
relations: 

N 

La--= ~ Otk-- 1 = 0  
k = l  

(there is almost surely a "request"),  and 

N 

n 2----~ ( 1 - a  k - i l k ) - l = 0  
k=l 

(there is almost surely an "acceptation"). The latter relation can also be written 

N 

L2 =-- N - 2-  ~ ilk=O, 
k = l  

which shows that N > 3. 
The set of p~ = (a k, ilk, Yk, ~k, Ok) verifying these constraints is denoted by ~ .  

6.2.  D E F I N I T I O N S  

The set 9° of system states is ~N. 
The set 5 e° of initial system states is the set ~N itself. 
The set J- of functioning rules is (Mp)pE ~ . 
The decision function is: 

N kT 2 ~ (1 -- ~,) (1 -- a~ -- ilk) 
f= E q k - - =  q* (1 6g) flk- k = l  kT 3 k = l  

N 
where the constants qk are such that Vk E ( 1 , . . . ,  N}, qk E ]0, 1[ and Zk= 1 qk = 
1. 

AS in the previous problem, from the computation of litany= (kM)n, we obtain 
1 . the expression for ~ ,  in particular: 

1 - Yk 1 - -  a k - - / 3  k ( 1  - -  ot k - -  i l k ) ( 1  - -  T k )  

kT 2 = 1 + ~ +  ilk( l _ 6 k  ) + ilk(i--Ok) ' 
and 
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1 -  3 k i l k ( l -  3 k) 1 -  6 k 
kT  3 = 1 + 1 -- a k -- flk + (1 -- a k -- ilk)(1 -- Yk) + 1----~k " 

In the present case, the best functioning rule consists in reducing as much as 
possible the mean recurrence time of the state "refusal" (that is to say, coming 
back as often as possible to the state "re fusa l " )  and at the same time in 
maximizing the mean recurrence time of the state "acceptation" (that is to say, 
coming back as late as possible to the state "acceptation"). Minimizing the sum of 
the ratios of the mean recurrence time of the state "refusal" to the mean 
recurrence time of the state "acceptation" corresponds to the desired functioning 
rule. 

6.3. RESULTS 

THE OR EM 6.1. (a) V(%, 6 I, 01 . . . .  , "YN, ~N, ON) E (]0,  1D 3N, the unique opt imal  

func t ion ing  rule is Mp = ( M p? . . . , MpN ), where 

( N -  1)%11 6k 

Ok = 1 -  l - y :  

r';=l q' l ~, 

( N -  2 )q  k l  1 6k 

' - 3 , j  , ' / k , G ,  0k • 

2~v=1 q]~ 6j 

(b) I f  the % . . . .  , YN are bounded  f r o m  above  and the 6~, . . . , 6 u are bounded  

f r o m  be low,  that is to say i f  Yk @ ]0, Ck] and 3 k ~ [dk, 1[, k ~ { 1 , . . . ,  N}. Then the 
set ~g o f  g o o d  func t ion ing  rules is the set o f  opt imal  funct ioning rules Mp described 

in (a) with ( Yk, 3k) = (Ck, de) ,  k ~ { 1 , . . .  , U}, when ( 0 1 , . . . ,  ON) varies in (]0,1D u. 
(c) In  the part icular case where V k  ~ {1 . . . .  N } ,  (c k, dk)  = (c, d ) ,  O k = ~ ,  and 

qk = ~ ,  then we f i n d  the fairness solution which is 

Ok= h i '  N , c , d ,  . 

Proof .  By considering the constraints L1 and L2, and introducing the Lagrange 
multipliers A 1 and A2, we have to solve the following system of equations: 

Of + AI OLI OL2 _ qk( 1 -  Yk) 
Oak ~ + A2 Oak ilk( 1 --  ~k)  /~1 = 0 ,  (1) 

Of 3L~ 3 L  z qk(1 -- yk)(1 -- ak) 
+ a ,  + ot3---[ = t3 (1 - - = o .  ( 2 )  

The solution of equation (1) gives 

1 -  7k EN1 q] l - -  y] 
qk 1 -- 6k _ 1 ~j 

t~l - -  f i k  N - 2 
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v i z .  

( N - 2 ) q k i _ - -  ~ 

N l - -T]  
EJ=lqi 1 3] 

Considering this value of/3k, (2) gives: 

- - A 2  ---- 

which implies 

N 1-~,~ 
(1 - a~) ~,j~xqj i ~j 

1--Tk 
(N - 2)2qk ]-_-- 3k 

(N - 1) 
(N - 2) 2 , 

-- Tk 
(N - 1)qk ~ 6k 

Otk-= l - -  
N I - - T j  

Let us now show that this solution corresponds to a minimum for f. To this end, 
1 - :,~ a n d  let us reduce the initial problem to an equivalent one by setting w k = q~ 

A~ = 1 - %. The equivalent problem is to minimize 

F ( A , , / 3 1 , - . - ,  AN, ~N) = W~ 
k = l  

under the constraints 
N 

N - 2 - ~  /3k = 0 ,  
k = l  

N 

E A ~ = N - 1 ,  
k=l 

A k < l ,  /3k>0 ,  A~- - /3k>0 .  

It is straightforward that the solutions 

( N - 1 ) w  k , f i k _  ( N - 2 ) w  k 

of the initial problem correspond to the solutions 

. / (N" 1)w~ (N- 2)w~ 
' E j =  1 Wj 

of the equivalent problem. Note that the function 
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is convex, since its Hessian 

2 - 2 A k \  

- 2 A ~  2 A  k ] 

corresponds to a positive semi-definite quadratic form. F is thus convex as a linear 
combination of convex functions with positive coefficients. Consequently, the 
solution (A 1, /31 , . - - ,  AN, /3~) corresponds to a minimum for F, and it is the 
same for the solution 

( 1 - ( N -  1)w k , (N-2)w~'~_~_._.__ 

E~v=~ w i Ei=~ w i / 

of the initial problem. • 

7. The Deadlock Problem 

7.1. T H E  P R O B L E M  

The deadlock problem is a frozen situation generally resulting from a circular 
inter-process dependence. It often occurs in a wait-for-communication scheme or 
for a concurrent access to a resource [6]. 

The problem considers a network of N finite homogeneous Markov chains. 
With the same state space V k E  { 1 , . . . ,  N) ,  k S =  ~ =  ( 1 , . . . , 4 ) ,  where state 
1 = "act ive",  state 2 = "idle",  state 3 = " terminated",  state 4 =  "blocked",  and 
with the following transition matrix: 

' a k 1 - a k 0 0 \ 

Mp k= flk 3'~ 8 k 1 - - f lk - -3 ,~- -Sk) .  
1 0 0 0 ' 

~0 0 0 1 

where Pk = (ak ,  /3k, Yk, 8k) E ]0, t[ 4, and/3 k + 7k + 8k < 1. 
The Markov chains verify condition (C): each of the chain has only one ergodic 

class (reduced to the state 4) and has only one transient class. The connection in 
the network is expressed here by the relations: 

iV 

L 1 

(from state 

Z 2 --- 

(from state 

L 3 

ak - 1 = 0 (3) 
k = l  

1, there is almost surely at least one process which stays in state 1); 

N 

flk - 1 = 0 (41 
k = l  

2, there is almost surely at least one process which goest to state 1); 

N 

Yk -- 1 = 0 (5) 
k = l  
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(from state 2, there is almost surely at least one process which stays in that state); 

N 

L4 ~ E 6 ,  -- 1 = 0 ( 6 )  
k=l 

(from state 2, there is almost surely at least one process which goes to state 3). 
The set of the p, 's ,  {p,} such that p,  -- ( a , ,  f k ,  Y*, 6k), verifying these constraints 
is denoted by ~ .  

7.2. DEFINITIONS 

The set 9 ° of  system states is ~N. 
The set 9o0 of system initial states is the set ~N itself. 
The set 3 - o f  functioning rules is (Mp)pe ~. 
The decision function is: 

N (Big + 8k) + (1 -- ak)(1 + ak) 
f=--k=l • qe ( 1 - % ) ( 1 - / 3  k - T k - 8 , )  ' 

N where  the constants qk are such that Vk E { 1 , . . . ,  N},  qk E l 0 ,  1[ and E,= 1 q ,  = 
1. 

The reason to the choice of  this function is that states 1, 2, 3 are transient, 
while state 4 is an absorbing state; a good criterion is to avoid entering too quickly 
into state 4. As one can only enter in state 4 from state 2, it is equivalent to say 
that a bad criterion is to enter state 2 as quickly as possible, i.e., to minimize the 
sum of the respective mean sojourn times in state 1, 2, 3 starting from state 2. As 
indicated in subsection 3.2, computing ( I - k w ) - *  yields 

3 f i  + 8k + (1 - ak)(1 + 6,)  

~" *$2' = (1 - a , ) (1  - fit - 3'k -- 8,) ' i=1 

from which we get the expression of f. 
The search for optimal solutions of f ,  when taking into account the constraints 

L; and introducing Lagrange multipliers )q, i E {1, 2, 3, 4} leads to the following 
system of equations: 

4 
e f + e y ,  
OOl---"-£ -~ki-1 
of 0 4 

of, + E i=7 

4 
of +__~0 E 

OTk CgTk i=1 

o f  • 4 

es, i=1 

f k  + 6k 
A,L, -- q, (1 - a,)z(1 - f k  - Yk -- 6k) + At = 0 ,  (7) 

= qk [ 1 - - Y ~ + ( 1 - - a k ) ( l + 6 k ) ]  a,L, - - ,  + < = o ,  (8) 

= qk [ f * + 6 * + ( 1 - - a k ) ( l + 6 * ) ]  
AiLi l - a ,  - ( ~ - - _ ~ ? 5 ~ , ~ Z ~  + h 3 = O '  (9) 

qk [ 3 - - f k - -  2ak--2Yk + akflk + a*Yk] 
+ A 4 = O .  

(10) 
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The simultaneous solution of all these equations is difficult. So we derive a 
partial solution, first in relying on the importance of the role of fairness, and 
second in fixing 2 parameters out of 4: then we have C~ = 6 cases to study. Also 
remark that this study has only a sense for N I> 4; this is due to the condition 

flk -k- 'yk q- 6k "~ l. 

T H E O R E M  7.1. Suppose that V k ~  { 1 , . . . ,  N}, % = 1 ,  /3k = 1.  Then the s e t ~  

of  bad functioning rules is the set of  M o's, M o = (Mol, . .  . , MoO where 

( 1 1 N z + Z N - 1  4NZT_3N+_l 
Pk = ~ , ~ , Y k ,  3 N Z _ 5 N + 2  Y k + N ( 3 N Z _ 5 N + 2 ) / ,  

k E { 1 , . . . , N } ,  when 

(71 . . . .  ,TN) ~ O , N ( N a + 2 N _ I )  " 

The fairness belongs to this set. Its complementary set ~ is the set of  advisable 

functioning rules. 
Proof. (a) Considering the equations (9) and (10), we have: 

1+ 1 qk - - - -  + A 3 = 0 

I 1 ~ 1 { 1 - 2 N ' ~  -] 
3 ( 1 -  ~ )  + V + ~ ) T k  / 

qk . . . . . . .  + A 4 = 0.  
N - 1  2 J 

(1) 
1 +  2 - ~  a k N 2 + 2 N _ l  A_3= 

/~4 3 1 { 1 - 2N'~ 3N 2 - 5N + 2 ' 
3 -  N + + t - - - - y - ) r k  

Thus 

which shows that 

N 2 + 2N - 1 4N 2 - 3N + 1 

6k = -- 3N 2 - 5N + 2 Yk + N(3N  z _ 5N + 2) 

Let  us denote by (g&, 8k) these solutions. It can be easily checked that ( I ,  1 )  is 
one of such solutions. Note that the qk'S do not appear in these solutions. 

(2) Since 6 k E ]0, 1[, we have 

N 2 + 2N - 1 4N 2 - 3N + 1 
0 < 3N 2 - 5N + 2 7k + N(3N 2 _ 5N + 2) < 1,  

which implies that 
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- 3 N  3 + 9N 2 - 5N + 1 

N ( N  2 + 2 N  - 1) 
< h k <  

4N 2 - 3N + 1 

N ( N  2 + 2 N  - 1) 

Since N t> 4, 

- 3 N  3 + 9N 2 - 5N + 1 

and 

N ( N  2 + 2 N  - 1) 

4N  2 - 3N + 1 
< 1 .  

N ( N  2 + 2 N  - 1) 

Therefore  the result is valid for 

< 0 ,  

(] 4N2 3N+l DN 
(7, . . . .  , 7 N ) E  0, N ~  + - ~ - - 1 )  " 

(3) It remains to 

N 
N Z 

f - N - l  k=l 

where 

show that these solutions (4&, 6k) minimize the function f ,  

q k L  , 

( 2 N -  1)6 k + N 

f k =  ( N - 1 ) - N ( y  k + 6 k )  ' 

under  the constraints (5) and (6) and 

N - 1  
yk + 6~ < - -  

N ' 

"/k > 0 ,  6~ > 0 ,  k ~  { 1 , . . . ,  N } .  

By setting u k = 7k + 6k and p2 = ( 2 N -  1)6, + N, the problem changes to 

where 

under  

N 

N E 
g - N - l  k=l qkgk , 

2 
Pt, 

g k =  ( N - 1 ) -  N u  k ' 

the constraints 
N 

E U k = 2  ' 
k=I  

N - 1  
Uk < N ' 

u k > O ,  p k > O ,  k ~ { 1 ,  . . . .  N } ,  

N 

~ ,  p ~ = N 2 + 2 N - 1 .  
k=l  
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Note that since N>~ 4, N 2 q  - 2 N - 1  > 0  this polynomial being positive outside 
[ - 1  - V~ ,  - 1  + V~]. gk is convex, since its Hessian 

2 2Npk \ 

( N -  1-)-  Nu k [ ( N -  1 ) -  Nuk]Z~ 

V2gk = ~ 2Npk 2N2p 2 I 

corresponds to a positive semi-definite quadratic form. Therefore, 
N 

N Eqkgk 
g = N - 1  k=l 

is also convex. Thus, the solutions (3'k, 6k) of the initial problem (which 
correspond to the optimal solutions (Uk, 6k) of the reduced problem) are solutions 
which minimize the function f. 

THEOREM 7.2. Suppose that V k  ~ { 1 , . . . ,  N}, a k = ~, Yk = ~- Then the s e t , j  

o f  bad functioning rules is the set o f  Mo's, M o = (Mol, . . . , MoN), where 

( 1  1 2 N + 1  5 N - 1  ) 
Pk= ~ ,  fl~, N ,  3 N - 2  ~k + N ( 3 N -  2) ' 

k E  {1 , . . .  , N}  , when 

( E l , "  "" , / ~ N )  ~ 0,  N(2N+ 1) " 

The fairness belongs to this set. Its complementary set d i s  the set o f  advisable 
functioning rules. 

Proof. (1) Considering equations (8) and (10), we have: 

qk(2 + 6k) 
+ A 2 = 0  , \ 2 

~k -- 6k ) / 

N - 1  
N 

This gives 

q L  (N I 

A_~2= 

A4 

41 l + 3 N -  ~, + ~--~ 

/3k - 6k) 2 
+ A 4 = 0 .  

( - ~ ) ( 2  + 6k) 

, 
- f l k + 3 N -  ~ + ~7 

2 N + l  
3 N - 2  ' 

and thus, 
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2N + 1 5N - 1 
6k = 3 N - 2  [3k + N ( 3 N -  2) " 

Let  us denote by (/3k, 6k) these solutions• We can easily check that ( ~ ,  1 )  is one 
of such solutions. As in the case of Theorem 7.1, the coefficients qk do not appear 

in the solutions. 
(2) Since 6 k ~ ]0, 1[, we must have 

2N + 1 5N - 1 
O< 3 N - 2  fig + N ( 3 N _ 2 )  < 1 '  

which implies 

- 3 N  2 + 7 N -  1 5 N -  1 
N ( 2 N  + 1) < flk < N ( 2 N  + 1) " 

Since N~>4, - 3 N 2 + 7 N - l < 0  (this polynomial being negative for N ~  
[76v-~ 7+gv~] and 5N-, , NtzN+I) < 1 ) .  Thus, the proposition is valid for 

( i l l '  ~N)  ~ ( ]0 ,  5 N - 1  ['l N • • • ~ N ( 2 N + I )  t )  • 
(3) It remains to show that these solutions (/3k, ~k) minimize the function f 

which is here 
N 

N EqkL, 
f = N - - l  k=l 

where 

Nflk + (2N - 1)fi k + (N - 1) 
fk = ( N -  1) - N(~  k + ak) 

under constraints (3) and (5), and 

N - 1  
flk + 6k < N" ' 

/3~ >0 ,  6k>0, 

By writing fk in the form 

(N - 1)6 k + 2(N - 1) 
f k = - l +  

( N -  1) - U(/3 k + 6k) 

k e  { 1 , . . . ,  N} .  

and changing variables (as in (7.1)) /x k =/3~ + 6g and p2 k = ( N -  1)6 k + 2(N - 1), 
we transform the initial problem into the minimization problem of 

N 

N E q k g k ,  
g = N - 1  k=l 

2 
Pk 

g k =  ( N - 1 ) - N u  k '  

where 

under  the constraints 
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N 

~2 u k = 2 ,  
k = l  

N - 1  
uk < N ' 

u k > 0 ,  

pk>O,  k @ { 1 , . . . , N } ,  

N 

~2 P~ = ( 2 N +  1 ) ( N -  1).  
k = l  

The function gk is convex since its Hessian Vzgk is the same as the one of Theorem 
7.1. Thus g is convex. The solutions (fig, 6k) of the initial problem correspond to 
the optimal solutions (t~k, t~k) of the transformed problem which minimize f. In 
the particular case where Vk ~ { 1 , . . . ,  N}, qk = ~,  we are brought back to the 
study completed in [2]. • 

T H E O R E M  7.3. Suppose that Vk E {1 . . . . .  N}, ~k = -}, 6k = -}. Then the s e t ~  
o f  bad functioning rules is the set o f  M o's, Mp = (Mol . . . .  , Mo~), where 

( 1  - 2 N Z + N + I  3 N 2 + N - 2  1 )  
Pk = -~, flk, u E + 2 N _ l  fik + u ( u Z  + 2 U _  l ) ,  ~ , 

k E { 1 , . . . , N } ,  when 

(/31, , / 3 N ) ~ ( ]  O, 3 N Z + N - 2  
• . .  

[) 
The fairness belongs to this set. Its complementary set M is the set o f  advisable 
functioning rules. 

Proof. (1) Considering the equations (8) and (9), we have 

qk " Y k +  ---NT--- + A 2 =  0 
N - 1  - - - -  z ' 

qt - flu + N 2 
N -  1 [ ( - ~ - 1  /3k -- Yk . . . . .  2 "4- t~ 3 = 0 ,  

which gives 

2N 2 - 1 

A2 = ~/k N 2 = . - ( N -  1)(2N + 1) 

A 3 N 2 + N - 1 N 2 + 2N - 1 
/~k + 

N 2 
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Thus 

- 2 N  2 + N + 1 3N z + N - 2 
Yk = NZ + 2 N _  I fig + N(NZ + 2 N _  l) 

Let  us denote  by (/3k, Yk) these solutions. It can be easily checked that (-~, -~) is 
one of these solutions. Note here again that the qg do not appear  in the solutions. 

(2) Since 7k E ]0, 1[, we must have 

- 2 N  2 + N + 1 3N 2 + N - 2 
0 <  N 2 + 2 N _  1 ilk+ N ( 2 N 2 _ N _ I )  < l  

This implies that 

- N  2 + 2  

N(2N + 1) < fig < 

Since N >i 4 and 

3N 2 + N - 2 - N  2 + 2 

U ( 2 U  2 - U - 1) < 1, U(2U + 1) 

Thus, the proposit ion is valid for 

3N 2 + N - 2 

N(2N z - N - 1) 

< 0 .  

(] 3N2+N 2 [)N 
( f l , ' ' ' , f i N ) ~  0, N ( 2 N  2 _ N _ l )  " 

(3) Let  us show that the solutions (/~k, Tk) minimize the function f which is 

here: 
N 

1 E qkfk, f = N - 1  k=l 

where 

N2flg + (N 2 + N -  1) 

fk = ( N -  1)~--N~fk-+-T-~ ' 

under  the constraints (4) and (5), and 

N - 1  
f k +  7k<  N ' 

f k > 0 ,  7 k > 0 ,  k ~ { 1 , . . . , N ) .  

First remark  that since N/> 4, N 2 + N - 1 > 0 (because this polynomial is positive 
outside the interval [-1~V5, -1~v3])_ . By setting Uk = #k + 7k and pz k = N2#k + 
( N 2 +  N -  1), the problem consists then in minimizing 

N 1 ~ q~gk, 
g = N - i  k=X 

where 
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2 
Pk 

gk= ( N - 1 ) -  Nu~ ' 

under the constraints 
N 

E Uk=2 ' 
k = l  

N - 1  
uk < N ' 

u k > 0  , p k > 0 ,  k E { 1 , . . . , N } ,  

N 

Z p2= N(N 2 + 2 N _  1 ) > 0 .  
k = l  

Here again, we see that the function gk is convex since its Hessian is the same as 
in the preceding cases. Thus g is convex. Therefore, the solutions (/3k, ~'k) of the 
initial problem (which correspond to optimal solutions (uk, t~k) of the reduced 
problem) are solutions which minimize the function f. • 

T H E O R E M  7.4. Suppose that Vk @ { 1 , . . . ,  N}, flk = -~, 6k = ~ and 

N - 2  
q~ < N ( N - 3 )  " 

Then the se t .~o f  bad functioning rules is reduced to {Mp} = { ( M o l , . . . ,  MpN)}, 
where 

Oh= N ' N '  ( N - 3 ) q ~ + - - - - ~ ,  , 

k ~ { 1 , . . .  , N}. In the particular case where Vk E {1 . . . .  , N}, qk = ~, we find 
the fairness solution Ok = ( 1, ~, ~,  ~ ) . d i s  the set of  advisable functioning rules. 

Proof. (1) Considering the equations (7) and (9), we have: 

2qk 
+At=O, 

-qg[1 + (1 - ak)(N + 1)] 
+ A z = O ,  

which gives 

A a - 2  - 2 N  

A 2 (1 - ak)[2 + (1 - ak)(N + 1)] = 2(N - 1) + (U + 1)E~= 1 (1 - aj) z " 

That  is to say Vj, k ~ { 1 , . . . ,  N}, 

- 2  - 2  

( N + 3 ) - 2 ( U + Z ) a k + ( N + l ) a  ~ ( N + 3 ) - 2 ( N + 2 ) a j + ( N + I ) a ~ "  
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This yields that 

(a  k - a , ) [ - 2 ( N  + 2) + (N + 1)(a k + aj)] = O. 

Since ak, aj E ]0, 1[, 

- 2 ( N  + 2) + (N + 1)(a k + aj) < - 2 ( N  + 2) + 2(N + 1) = - 2  < 0 ,  

then 

1 
ak=aJ= N" 

Substituting a~ = -~ in (7), we also have 

- - A  1 = 
2qk 

2 

which gives 

N - 2  
Yk = - ( N  - 3)qk + 

Let  us denote this solution by (&k, 3'k)" 
(2) Since Yk C ]0, 1[, we must have 

N - 2  
O< - ( N -  3)q k + ~ < 1, 

which yields 

- 2  

N(N - 3) < qk < 

Since 

and 

N - 2  
N ( N -  3) " 

- 2  
N~>4'  N ( N -  3) < 0  

2N 
(N - 1)Z(N - 3) ' 

where 

N - 2  
0 <  < 1 .  

N(N - 3) 

Thus, we have the condition 

N - 2  
qk < 

N ( N -  3) " 

(3) Let us show now that the solution (&~, ~&), k E { 1 , . . . ,  N}, minimizes f, 
which is here 

N 

f =  E qkfk, 
k = l  
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2 N + I  
N + ( 1 - , ~ )  

fk = 
( 1 -  % ) ( N - 2  Tk) 

N 

under constraints (3) and (5), and 

ak E ]0, 1[, 

N - 2  
0 < Tk < - - - ~ -  , k E { 1 , . . . , N } .  

If we set 

2 N + I  N - 2  
9 C ~ a = N ' b -  N N ' 

the Hessian of fk is 

(1 - % (c - Tk) (1 -- Ctk)~(C -- Tk) 2 

V2fk = 2[a + b ( 1 -  ak) ] l "  
- -  - ' 7 7 7 - - , -  -X-2 . . . .  

~(1 - %) (c - Yk) (1 -- ak)(C -- ~/~) ] 

It corresponds to a positive semi-definite quadratic form, since V(Xl, x2)1~ R 2 

(Xl)__ 20 
(Xl 2) f ~ x 2  (1 ~ x l +  - x - o,~) (c - ~,,) c ~,~ 

21 O~ k 

+ [3a + b(1 - otg)] ] a( c-rk)2 ~j>!0 
This shows that fk is convex and consequently f is convex. 
The solution (ak, Yk), k E { 1 , . . .  , N} corresponds to a minimum for f. • 

7 .3 .  O T H E R  C A S E S  

REMARK 7.1. (concerning the case where V k E  { 1 , . . . ,  N}, /~k = ~, "/k = ~). 
Here the set J o f  bad functioning rules is a subset o f  the set o f  Mp's, Mp = 
(Mol, . . . , MpN), where 

Ok= ak' N '  N ' ~ k  , 

k E { 1 , . . . ,  N} ,  are such that 

(ak, ~k) ~]0,  1[×]0, - ~ [  
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for which the following relation holds: 

( N - 2 )  + N ( N -  3)rk - N rk2 2 

U(U - 1)(3 - 5a k + 2a 2) 

N(2N 5) N 2 N 2 
- -  - -  Ek= 1 6 i 

3NZ(N - 1) - 5N(N - 1) + 2N(N - 1) E~= a a 2" 

The fairness ( ~,  ~, ~,  i ) belongs to this set of  Mp's. 
Sketch of  Proof. Considering the equations (7) and (10), we have: 

qk 
~v +rk  

+ A I = 0 ,  

and 
2N - 3 

+ 2  a k 
qk q- A 4 = 0 , 

thus 

) 
A4 

(1-ak)(____N__ + 3 N - 3  2(N-__ 1)6k ) 

This leads to the above relation. 

REMARK 7.2. (concerning the case where V k E  {1 . . . . .  N}, Tk = ~, 6k = ~). 
As in the previous remark, the set . Jo f  bad functioning rules is a subset of  the set of 
Mp's, Mp = (Mpl . . . .  , Mpu), where 

( 1 1 )  

k ~ { 1 , . . .  N},  are such that 

(ak, /3k) E ]0, 1[ X ]0, - ~ [  

for which the following relation holds: 

( U  - 2 )  + U ( U  - 2 2 N - N / 3  k _ 2 N -  5 -  N E j= 1/3j 
N 2 • 2 N - ( 3 N + l ) a k + ( N + l ) a  2 2 N 2 - 3 N - I + ( N + I )  Ej=laj 

The fairness ( ~, k ,  ~,  ~v ) belongs to this set of  Mp's. 
Sketch of  Proof. Considering the equations (7) and (8), we have: 
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and 

then 

qk 

1 

-[-A 1 = 0  

N - 1  N + I  
+ - - ~  (1 - ak) 

qk + A 2 = 0 ,  

d 
+ 1 N -  ilk) 

A__.!= 
A2 

- 

this leads to the above relation. 

8. Condusion 

We have introduced a model for distributed computing that helps to handle the 
complexity of concurrency control problems. 

With this approach, we first showed that one can formally find good functioning 
properties (safety and liveness properties) in a systematic way for the considered 
distributed control problems. It is an efficient theoretical tool for reasoning about 
distributed algorithms, with property that the global behaviour is obtained from 
the study of local behaviour. 

We then devised optimal functioning properties for different classical distribut- 
ed computing Problems in which fairness is proven a decisive issue. 

On the other hand, as we are able to estimate statistically the model's 
parameters from various executions ([3]), this gives tools for the evaluation of the 
means for the evaluation of the performance of distributed algorithms in their 
average behaviour. This also corresponds to the requirements for a self-tuning 
method for distributed systems. From a practical point of view, we have encoded 
the model's functionalities in a simulator, having thus an interesting practical tool 
for comparing different asynchronous distributed algorithms ([3]). 
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